The Capital Region of Denmark Emergency Medical Services Copenhagen UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES

Machine learning – use of Al in medical dispatch

PhD project by Nikolaj Blomberg

Disclosure

No conflict of interest in relation to this research project

 Received an unrestricted research grant from TrygFoundation

Received centre support from Laerdal

The challenge:

- EMDC in Copenhagen receives 100,000 emergency calls per year
- 1-2% are OHCAs
- Hard to gain experience and improve in OHCA recognition for the individual dispatcher
- How can we improve OHCA recognition and time to OHCA recognition?

The role of the EMDC in OHCA

Resuscitation 111 (2017) 55-61

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/resuscitation

Clinical paper

Effect of bystander CPR initiation prior to the emergency call on ROSC and 30 day survival—An evaluation of 548 emergency calls[‡]

Søren Viereck^{a,*}, Thea Palsgaard Møller^a, Annette Kjær Ersbøll^b, Fredrik Folke^a, Freddy Lippert^a

^a Emergency Medical Services Copenhagen, University of Copenhagen, Telegrafvej 5, Building 2, 3rd Floor, DK-2750 Copenhagen, Denmark ^b National Institute of Public Health, University of Southern Denmark, Øster Farimagsgade 5A, DK-1353 Copenhagen, Denmark

- Identified 75% of all OHCA -

Among all patients with bystander CPR: 35% started CPR before 9-1-1 call 65% started CPR during the 9-1-1 call

FACULTY OF HEALTH AND MEDICAL SCIENCES UNIVERSITY OF COPENHAGEN

Still – we do not always understand what callers are telling us

If we don't recognize cardiac arrest, we don't provide dispatcher assisted CPR and we don't refer caller to an AED

Can AI help ? How EMDC-Copenhagen use AI

- We set out to investigate if AI can be used as a desicion support tool in medical dispatch
- It is a tool for support, not a final bottom line

REGION

The technology: Machine Learning

- The basic premise of machine learning is to build algorithms that can receive input data and use statistical analysis to predict an output value
- Machine Learning is pattern recognizion

Raw audio data for 2014 (n = 108,607)	Machine learning framework	Dispatcher
Sensitivity (95% CI)	84.1 (81.6;86.4)	72.4 (69.4;75.3)
Specificity (95% CI)	97.3 (97.2;97.4)	98.8 (98.7-98.8)
Negative Predictive Value (95% CI)	99.9 (99.8;99.9)	99.8 (99.7;99.8)
Positive Predictive Value (95% CI)	20.9 (19.6;22.3)	33.0 (30.1;35.1)
Sensitivity (95% CI), calls unrecognized by dispatchers	44.5 (38.4-50.7)	-
Time to recognition, paired observations		
Median (seconds)	41 (38;44)	54 (50;59)
Lower quartile (seconds)	24 (22;26)	30 (28;33)
Upper quartile (seconds)	67 (63;72)	97 (89;110)

The Capital Region of Denmark

Emergency Medical Services Copenhagen

UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES

REGION

The Capital Region of Denmark

Emergency Medical Services Copenhagen

1.0Area Under the Receiver Operator Curve 90 2.0 80 60 --- CEMS MLF + CEMS--- SFD MLF + SFD0.50 15050100 200250300 350Time To Detection (seconds)

(b)

(a)

What it took to get here

To "teach" the artificial intelligence

- Download >100,000 recorded calls to 1-1-2
- Identify > 2,000 calls regarding OHCA
- Make sure there are no calls on OHCA in the group not labelled OHCA

13

Challenges in getting here

- Download the calls technical difficulties in downloading several hundred thousand calls
- Labelling calls need an updated cardiac arrest registry
- Integrating the technology in the IT-infrastructure
 - We build a stand-alone device that connected directly with the phone. Ideally integrated in the dispatch system

14

Can AI work on live audio in clinical practice

- Prospective randomised trial
- Started september 2018
- 6 months,
- ~ 328 stops in each group
 - When the machine predicts a cardiac arrest, 50% of the alerts are shown to the dispatchers
- Alert: Dispatch A1; Dispatch HeartRunners

15

The Capital Region of Denmark Emergency Medical Services Copenhagen UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES

Thanks to:

Corti TrygFonden

helping save lives

www.regionh.dk/akut