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ummary of changes since 2005 Guidelines

The most important changes in the 2010 European Resuscitation
ouncil (ERC) guidelines for electrical therapies include:

The importance of early, uninterrupted chest compressions is
emphasised throughout these guidelines.
Much greater emphasis on minimising the duration of the pre-
shock and post-shock pauses. The continuation of compressions
during charging of the defibrillator is recommended.
Immediate resumption of chest compressions following defib-
rillation is also emphasised; in combination with continuation
of compressions during defibrillator charging, the delivery of
defibrillation should be achievable with an interruption in chest
compressions of no more than 5 s.
Safety of the rescuer remains paramount, but there is recogni-
tion in these guidelines that the risk of harm to a rescuer from
a defibrillator is very small, particularly if the rescuer is wearing
gloves. The focus is now on a rapid safety check to minimise the
pre-shock pause.
When treating out-of-hospital cardiac arrest, emergency med-
ical services (EMS) personnel should provide good-quality CPR
while a defibrillator is retrieved, applied and charged, but rou-
tine delivery of a pre-specified period of CPR (e.g., 2 or 3 min)
before rhythm analysis and a shock is delivered is no longer
recommended. For some emergency medical services that have
already fully implemented a pre-specified period of chest com-
pressions before defibrillation, given the lack of convincing data

either supporting or refuting this strategy, it is reasonable for
them to continue this practice.
The use of up to three-stacked shocks may be considered if
ventricular fibrillation/pulseless ventricular tachycardia (VF/VT)
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E-mail address: charlesdeakin@doctors.org.uk (C.D. Deakin).
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occurs during cardiac catheterisation or in the early post-
operative period following cardiac surgery. This three-shock
strategy may also be considered for an initial, witnessed VF/VT
cardiac arrest when the patient is already connected to a manual
defibrillator.

• Electrode pastes and gels can spread between the two paddles,
creating the potential for a spark and should not be used

Introduction

The chapter presents guidelines for defibrillation using both
automated external defibrillators (AEDs) and manual defibrillators.
There are only a few differences from the 2005 ERC Guidelines. All
healthcare providers and lay responders can use AEDs as an inte-
gral component of basic life support. Manual defibrillation is used
as part of advanced life support (ALS) therapy. Synchronised car-
dioversion and pacing options are included on many defibrillators
and are also discussed in this chapter.

Defibrillation is the passage of an electrical current across the
myocardium of sufficient magnitude to depolarise a critical mass
of myocardium and enable restoration of coordinated electrical
activity. Defibrillation is defined as the termination of fibrillation
or, more precisely, the absence of VF/VT at 5 s after shock deliv-
ery; however, the goal of attempted defibrillation is to restore an
organised rhythm and a spontaneous circulation.

Defibrillator technology is advancing rapidly. AED interaction
with the rescuer through voice prompts is now established and
future technology may enable more specific instructions to be given
by voice prompt. The evolving ability of defibrillators to assess

the rhythm whilst CPR is in progress is an important advance and
enables rescuers to assess the rhythm without interrupting exter-
nal chest compressions. In the future, waveform analysis may also
enable the defibrillator to calculate the optimal time at which to
give a shock.
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vital link in the Chain of Survival

Defibrillation is a key link in the Chain of Survival and is one
f the few interventions that have been shown to improve out-
ome from VF/VT cardiac arrest. The previous guidelines published
n 2005 rightly emphasized the importance of early defibrillation

ith minimum delay.1,2

The probability of successful defibrillation and subsequent sur-
ival to hospital discharge declines rapidly with time3,4 and the
bility to deliver early defibrillation is one of the most impor-
ant factors in determining survival from cardiac arrest. For every

inute delay in defibrillation, in the absence of bystander CPR, sur-
ival from witnessed VF decreases by 10–12%.4,5 EMS systems do
ot generally have the capability to deliver defibrillation through
raditional paramedic responders within the first few minutes of
call and the alternative use of trained lay responders to deliver
rompt defibrillation using AEDs is now widespread. EMS sys-
ems that have reduced time to defibrillation following cardiac
rrest using trained lay responders have reported greatly improved
urvival to hospital discharge rates,6–9 some as high as 75% if defib-
illation is performed within 3 min of collapse.10 This concept has
lso been extended to in-hospital cardiac arrests where staff, other
han doctors, are also being trained to defibrillate using an AED
efore arrival of the cardiac arrest team.11

When bystander CPR is provided, the fall in survival is
ore gradual and averages 3–4% per minute from collapse to

efibrillation3,4,12; bystander CPR can double3,4,13 or triple14 sur-
ival from witnessed out-of-hospital cardiac arrest. Resuscitation
nstructions given by the ambulance service before the arrival of
rained help increase the quantity and quality of bystander CPR15,16

nd use of video instructions by phone may improve performance
urther.17,18

All healthcare providers with a duty to perform CPR should be
rained, equipped, and encouraged to perform defibrillation and
PR. Early defibrillation should be available throughout all hospi-
als, outpatient medical facilities and public areas of mass gathering
see Section 2).19 Those trained in the use of an AED should also be
rained to deliver high-quality CPR before arrival of ALS providers
o that the effectiveness of early defibrillation can be optimised.

utomated external defibrillators

Automated external defibrillators are sophisticated, reliable
omputerised devices that use voice and visual prompts to guide
ay rescuers and healthcare professionals to safely attempt defib-
illation in cardiac arrest victims. Some AEDs combine guidance for
efibrillation with guidance for the delivery of optimal chest com-
ressions. Use of AEDs by lay or non-healthcare rescuers is covered

n Section 2.19

In many situations, an AED is used to provide initial defibrillation
ut is subsequently swapped for a manual defibrillator on arrival
f EMS personnel. If such a swap is done without considering the
hase the AED cycle is in, the next shock may be delayed, which
ay compromise outcome.20 For this reason, EMS personnel should

eave the AED connected while securing airway and IV access. The
ED should be left attached for the next rhythm analysis and, if

ndicated, a shock delivered before the AED is swapped for a manual
efibrillator.

Currently many manufacturers use product-specific electrode to
efibrillator connectors, which necessitates the defibrillation pads

lso being removed and replaced with a pair compatible with the
ew defibrillator. Manufacturers are encouraged to collaborate and
evelop a universal connector that enables all defibrillation pads
o be compatible with all defibrillators. This will have significant
atient benefit and minimise unnecessary waste.
n 81 (2010) 1293–1304

In-hospital use of AEDs

At the time of the 2010 Consensus on CPR Science Conference
there were no published randomised trials comparing in-hospital
use of AEDs with manual defibrillators. Two lower level studies
of adults with in-hospital cardiac arrest from shockable rhythms
showed higher survival to hospital discharge rates when defib-
rillation was provided through an AED programme than with
manual defibrillation alone.21,22 One retrospective study23 demon-
strated no improvements in survival to hospital discharge for
in-hospital adult cardiac arrest when using an AED compared with
manual defibrillation. In this study, patients in the AED group
with initial asystole or pulseless electrical activity (PEA) had a
lower survival to hospital discharge rate compared with those
in the manual defibrillator group (15% versus 23%; p = 0.04). A
manikin study showed that use of an AED significantly increased
the likelihood of delivering three shocks but increased the time to
deliver the shocks when compared with manual defibrillators.24

In contrast, a study of mock arrests in simulated patients showed
that use of monitoring leads and fully automated defibrilla-
tors reduced time to defibrillation when compared with manual
defibrillators.25

Delayed defibrillation may occur when patients sustain car-
diac arrest in unmonitored hospital beds and in outpatient
departments.26 In these areas several minutes may elapse before
resuscitation teams arrive with a defibrillator and deliver shocks.
Despite limited evidence, AEDs should be considered for the hospi-
tal setting as a way to facilitate early defibrillation (a goal of <3 min
from collapse), especially in areas where healthcare providers have
no rhythm recognition skills or where they use defibrillators infre-
quently. An effective system for training and retraining should be
in place.11 Enough healthcare providers should be trained to enable
achievement of the goal of providing the first shock within 3 min
of collapse anywhere in the hospital. Hospitals should monitor
collapse-to-first shock intervals and monitor resuscitation out-
comes.

Shock in manual versus semi-automatic mode

Many AEDs can be operated in both manual and semi-automatic
mode but few studies have compared these two options. The semi-
automatic mode has been shown to reduce time to first shock when
used both in-hospital27 and pre-hospital28 settings, and results
in higher VF conversion rates,28 and delivery of fewer inappro-
priate shocks.29 Conversely, semi-automatic modes result in less
time spent performing chest compressions29,30 mainly because of
a longer pre-shock pause associated with automated rhythm anal-
ysis. Despite these differences, no overall difference in return of
spontaneous circulation (ROSC), survival, or discharge rate from
hospital has been demonstrated in any study.23,27,28 The defibrilla-
tion mode that affords the best outcome will depend on the system,
skills, training and ECG recognition skills of rescuers. A shorter pre-
shock pause and lower total hands-off-ratio increases vital organ
perfusion and the probability of ROSC.31–33 With manual defibril-
lators and some AEDs it is possible to perform chest compressions
during charging and thereby reduce the pre-shock pause to less
than 5 s. Trained individuals may deliver defibrillation in manual
mode but frequent team training and ECG recognition skills are
essential.

Automated rhythm analysis
Automated external defibrillators have microprocessors that
analyse several features of the ECG, including frequency and ampli-
tude. Developing technology should soon enable AEDs to provide
information about frequency and depth of chest compressions dur-
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ng CPR that may improve basic life support (BLS) performance by
ll rescuers.34,35

Automated external defibrillators have been tested extensively
gainst libraries of recorded cardiac rhythms and in many trials
n adults36,37 and children.38,39 They are extremely accurate in
hythm analysis. Although most AEDs are not designed to deliver
ynchronised shocks, all AEDs will recommend shocks for VT if the
ate and R-wave morphology and duration exceeds preset values.
ost AEDs require a ‘hands-off’ period while the device analyses

he rhythm. This ‘hands-off’ period results in interruption to chest
ompressions for varying but significant periods of time40; a factor
hown to have significant adverse impact on outcome from car-
iac arrest.41 Manufacturers of these devices should make every
ffort to develop software that minimises this analysis period to
nsure that interruptions to external chest compressions are kept
o a minimum.

trategies before defibrillation

inimising the pre-shock pause

The delay between stopping chest compressions and delivery of
he shock (the pre-shock pause) must be kept to an absolute mini-

um; even 5–10 s delay will reduce the chances of the shock being
uccessful.31,32,42 The pre-shock pause can easily be reduced to less
han 5 s by continuing compressions during charging of the defib-
illator and by having an efficient team coordinated by a leader
ho communicates effectively. The safety check to ensure that
obody is in contact with the patient at the moment of defibril-

ation should be undertaken rapidly but efficiently. The negligible
isk of a rescuer receiving an accidental shock is minimised even
urther if all rescuers wear gloves.43 The post-shock pause is min-
mised by resuming chest compressions immediately after shock
elivery (see below). The entire process of defibrillation should be
chievable with no more than a 5 s interruption to chest compres-
ion.

afe use of oxygen during defibrillation

In an oxygen-enriched atmosphere, sparking from poorly
pplied defibrillator paddles can cause a fire.44–49 There are several
eports of fires being caused in this way and most have resulted
n significant burns to the patient. There are no case reports of
res caused by sparking where defibrillation was delivered using
dhesive pads. In two manikin studies the oxygen concentration
n the zone of defibrillation was not increased when ventilation
evices (bag-valve device, self-inflating bag, modern intensive care
nit ventilator) were left attached to a tracheal tube or the oxygen
ource was vented at least 1 m behind the patient’s mouth.50,51 One
tudy described higher oxygen concentrations and longer washout
eriods when oxygen is administered in confined spaces without
dequate ventilation.52

The risk of fire during attempted defibrillation can be minimised
y taking the following precautions:

Take off any oxygen mask or nasal cannulae and place them at
least 1 m away from the patient’s chest.
Leave the ventilation bag connected to the tracheal tube or supra-
glottic airway device. Alternatively, disconnect any bag-valve
device from the tracheal tube or supraglottic airway device and

remove it at least 1 m from the patient’s chest during defibrilla-
tion.
If the patient is connected to a ventilator, for example in the
operating room or critical care unit, leave the ventilator tubing
(breathing circuit) connected to the tracheal tube unless chest
n 81 (2010) 1293–1304 1295

compressions prevent the ventilator from delivering adequate
tidal volumes. In this case, the ventilator is usually substituted by
a ventilation bag, which can itself be left connected or detached
and removed to a distance of at least 1 m. If the ventilator tub-
ing is disconnected, ensure it is kept at least 1 m from the patient
or, better still, switch the ventilator off; modern ventilators gen-
erate massive oxygen flows when disconnected. During normal
use, when connected to a tracheal tube, oxygen from a ventilator
in the critical care unit will be vented from the main ventilator
housing well away from the defibrillation zone. Patients in the
critical care unit may be dependent on positive end expiratory
pressure (PEEP) to maintain adequate oxygenation; during car-
dioversion, when the spontaneous circulation potentially enables
blood to remain well oxygenated, it is particularly appropriate to
leave the critically ill patient connected to the ventilator during
shock delivery.

• Minimise the risk of sparks during defibrillation. Self-adhesive
defibrillation pads are less likely to cause sparks than manual
paddles.

Some early versions of the LUCAS external chest compression
device are driven by high flow rates of oxygen which discharges
waste gas over the patient’s chest. High ambient levels of oxygen
over the chest have been documented using this device, particularly
in relatively confined spaces such as the back of the ambulance and
caution should be used when defibrillating patients while using the
oxygen-powered model.52

The technique for electrode contact with the chest

Optimal defibrillation technique aims to deliver current across
the fibrillating myocardium in the presence of minimal transtho-
racic impedance. Transthoracic impedance varies considerably
with body mass, but is approximately 70–80 � in adults.53,54 The
techniques described below aim to place external electrodes (pad-
dles or self-adhesive pads) in an optimal position using techniques
that minimise transthoracic impedance.

Shaving the chest

Patients with a hairy chest have poor electrode-to-skin electri-
cal contact and air trapping beneath the electrode. This causes high
impedance, reduced defibrillation efficacy, risk of arcing (sparks)
from electrode-to-skin and electrode to electrode and is more
likely to cause burns to the patient’s chest. Rapid shaving of the
area of intended electrode placement may be necessary, but do
not delay defibrillation if a shaver is not immediately available.
Shaving the chest per se may reduce transthoracic impedance
slightly and has been recommended for elective DC cardioversion
with monophasic defibrillators,55 although the efficacy of biphasic
impedance-compensated waveforms may not be so susceptible to
higher transthoracic impedance.56

Paddle force

If using paddles, apply them firmly to the chest wall. This
reduces transthoracic impedance by improving electrical contact
at the electrode–skin interface and reducing thoracic volume.57

The defibrillator operator should always press firmly on handheld
electrode paddles, the optimal force being 8 kg in adult and 5 kg in
children 1–8 years using adult paddles.58 Eight kilogram force may

be attainable only by the strongest members of the cardiac arrest
team and therefore it is recommended that these individuals apply
the paddles during defibrillation. Unlike self-adhesive pads, manual
paddles have a bare metal plate that requires a conductive material
placed between the metal and patient’s skin to improve electrical
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ontact. Use of bare-metal paddles alone creates high transthoracic
mpedance and is likely to increase the risk of arcing and worsen
utaneous burns from defibrillation.

lectrode position

No human studies have evaluated the electrode position as a
eterminant of ROSC or survival from VF/VT cardiac arrest. Trans-
yocardial current during defibrillation is likely to be maximal
hen the electrodes are placed so that the area of the heart that

s fibrillating lies directly between them (i.e. ventricles in VF/VT,
tria in AF). Therefore, the optimal electrode position may not be
he same for ventricular and atrial arrhythmias.

More patients are presenting with implantable medical devices
e.g., permanent pacemaker, implantable cardioverter defibrillator
ICD)). Medic Alert bracelets are recommended for these patients.
hese devices may be damaged during defibrillation if current is
ischarged through electrodes placed directly over the device.59,60

lace the electrode away from the device (at least 8 cm)59 or use an
lternative electrode position (anterior-lateral, anterior-posterior)
s described below.

Transdermal drug patches may prevent good electrode contact,
ausing arcing and burns if the electrode is placed directly over the
atch during defibrillation.61,62 Remove medication patches and
ipe the area before applying the electrode.

lacement for ventricular arrhythmias and cardiac arrest
Place electrodes (either pads or paddles) in the conventional

ternal-apical position. The right (sternal) electrode is placed to
he right of the sternum, below the clavicle. The apical pad-
le is placed in the left mid-axillary line, approximately level
ith the V6 ECG electrode or female breast. This position should

e clear of any breast tissue. It is important that this electrode
s placed sufficiently laterally. Other acceptable pad positions
nclude

Placement of each electrode on the lateral chest walls, one on the
right and the other on the left side (bi-axillary).
One electrode in the standard apical position and the other on the
right upper back.
One electrode anteriorly, over the left precordium, and the other
electrode posteriorly to the heart just inferior to the left scapula.

It does not matter which electrode (apex/sternum) is placed in
ither position.

Transthoracic impedance has been shown to be minimised
hen the apical electrode is not placed over the female breast.63

symmetrically shaped apical electrodes have a lower impedance
hen placed longitudinally rather than transversely.64

lacement for atrial arrhythmias
Atrial fibrillation is maintained by functional re-entry circuits

nchored in the left atrium. As the left atrium is located pos-
eriorly in the thorax, electrode positions that result in a more
osterior current pathway may theoretically be more effective
or atrial arrhythmias. Although some studies have shown that
ntero-posterior electrode placement is more effective than the
raditional antero-apical position in elective cardioversion of atrial
brillation,65,66 the majority have failed to demonstrate any clear

dvantage of any specific electrode position.67,68 Efficacy of car-
ioversion may be less dependent on electrode position when using
iphasic impedance-compensated waveforms.56 The following
lectrode positions all appear safe and effective for cardioversion
f atrial arrhythmias:
n 81 (2010) 1293–1304

• Traditional antero-apical position.
• Antero-posterior position (one electrode anteriorly, over the left

precordium, and the other electrode posteriorly to the heart just
inferior to the left scapula).

Respiratory phase

Transthoracic impedance varies during respiration, being min-
imal at end-expiration. If possible, defibrillation should be
attempted at this phase of the respiratory cycle. Positive end expira-
tory pressure (PEEP) increases transthoracic impedance and should
be minimised during defibrillation. Auto-PEEP (gas trapping) may
be particularly high in asthmatics and may necessitate higher than
usual energy levels for defibrillation.69

Electrode size

The Association for the Advancement of Medical Instrumen-
tation recommends a minimum electrode size of for individual
electrodes and the sum of the electrode areas should be a minimum
of 150 cm2.70 Larger electrodes have lower impedance, but exces-
sively large electrodes may result in less transmyocardial current
flow.71

For adult defibrillation, both handheld paddle electrodes and
self-adhesive pad electrodes 8–12 cm in diameter are used and
function well. Defibrillation success may be higher with electrodes
of 12 cm diameter compared with those of 8 cm diameter.54,72

Standard AEDs are suitable for use in children over the age of 8
years. In children between 1 and 8 years use paediatric pads with
an attenuator to reduce delivered energy or a paediatric mode if
they are available; if not, use the unmodified machine, taking care
to ensure that the adult pads do not overlap. Use of AEDs is not
recommended in children less than 1 year.

Coupling agents

If using manual paddles, disposable gel pads should be used to
reduce impedance at the electrode–skin interface. Electrode pastes
and gels can spread between the two paddles, creating the potential
for a spark and should not be used. Do not use bare electrodes with-
out gel pads because the resultant high transthoracic impedance
may impair the effectiveness of defibrillation, increase the sever-
ity of any cutaneous burns and risk arcing with subsequent fire or
explosion.

Pads versus paddles

Self-adhesive defibrillation pads have practical benefits over
paddles for routine monitoring and defibrillation.73–77 They are
safe and effective and are preferable to standard defibrillation
paddles.72 Consideration should be given to use of self-adhesive
pads in peri-arrest situations and in clinical situations where
patient access is difficult. They have a similar transthoracic
impedance71 (and therefore efficacy)78,79 to manual paddles and
enable the operator to defibrillate the patient from a safe distance
rather than leaning over the patient as occurs with paddles. When
used for initial monitoring of a rhythm, both pads and paddles
enable quicker delivery of the first shock compared with standard
ECG electrodes, but pads are quicker than paddles.80

When gel pads are used with paddles, the electrolyte gel
becomes polarised and thus is a poor conductor after defibrillation.

This can cause spurious asystole that may persist for 3–4 min when
used to monitor the rhythm; a phenomenon not reported with
self-adhesive pads.74,81 When using a gel pad/paddle combination
confirm a diagnosis of asystole with independent ECG electrodes
rather than the paddles.
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ibrillation waveform analysis

It is possible to predict, with varying reliability, the success of
efibrillation from the fibrillation waveform.82–101 If optimal defib-
illation waveforms and the optimal timing of shock delivery can
e determined in prospective studies, it should be possible to pre-
ent the delivery of unsuccessful high energy shocks and minimise
yocardial injury. This technology is under active development

nd investigation but current sensitivity and specificity is insuf-
cient to enable introduction of VF waveform analysis into clinical
ractice.

PR versus defibrillation as the initial treatment

A number of studies have examined whether a period of CPR
rior to defibrillation is beneficial, particularly in patients with
n unwitnessed arrest or prolonged collapse without resuscita-
ion. A review of evidence for the 2005 guidelines resulted in
he recommendation that it was reasonable for EMS personnel
o give a period of about 2 min of CPR (i.e. about five cycles
t 30:2) before defibrillation in patients with prolonged collapse
>5 min).1 This recommendation was based on clinical studies
here response times exceeded 4–5 min, a period of 1.5–3 min

f CPR by paramedics or EMS physicians before shock delivery
mproved ROSC, survival to hospital discharge102,103 and one year
urvival103 for adults with out-of-hospital VF/VT compared with
mmediate defibrillation. In some animal studies of VF lasting at
east 5 min, CPR before defibrillation improved haemodynamics
nd survival.103–106 A recent ischaemic swine model of cardiac
rrest showed a decreased survival after pre-shock CPR.107

In contrast, two randomized controlled trials, a period of
.5–3 min of CPR by EMS personnel before defibrillation did not

mprove ROSC or survival to hospital discharge in patients with out-
f-hospital VF/VT, regardless of EMS response interval.108,109 Four
ther studies have also failed to demonstrate significant improve-
ents in overall ROSC or survival to hospital discharge with an

nitial period of CPR,102,103,110,111 although one did show a higher
ate of favourable neurological outcome at 30 days and one year
fter cardiac arrest.110

The duration of collapse is frequently difficult to estimate accu-
ately and there is evidence that performing chest compressions
hile retrieving and charging a defibrillator improves the proba-

ility of survival.112 For these reasons, in any cardiac arrest they
ave not witnessed, EMS personnel should provide good-quality
PR while a defibrillator is retrieved, applied and charged, but rou-
ine delivery of a pre-specified period of CPR (e.g., 2 or 3 min) before
hythm analysis and a shock is delivered is not recommended.
ome EMS systems have already fully implemented a pre-specified
eriod of chest compressions before defibrillation; given the lack
f convincing data either supporting or refuting this strategy, it is
easonable for them to continue this practice.

In hospital environments, settings with an AED on-site and
vailable (including lay responders), or EMS-witnessed events,
efibrillation should be performed as soon as the defibrillator

s available. Chest compressions should be performed until just
efore the defibrillation attempt (see Section 4 advanced life
upport).113

The importance of early, uninterrupted chest compressions is
mphasised throughout these guidelines. In practice, it is often dif-
cult to ascertain the exact time of collapse and, in any case, CPR
hould be started as soon as possible. The rescuer providing chest

ompressions should interrupt chest compressions only for ven-
ilations, rhythm analysis and shock delivery, and should resume
hest compressions as soon as a shock is delivered. When two res-
uers are present, the rescuer operating the AED should apply the
lectrodes whilst CPR is in progress. Interrupt CPR only when it is
n 81 (2010) 1293–1304 1297

necessary to assess the rhythm and deliver a shock. The AED oper-
ator should be prepared to deliver a shock as soon as analysis is
complete and the shock is advised, ensuring no rescuer is in contact
with the victim.

Delivery of defibrillation

One-shock versus three-stacked shock sequence

A major change in the 2005 guidelines was the recommendation
to give single rather than three-stacked shocks. This was because
animal studies had shown that relatively short interruptions in
external chest compression to deliver rescue breaths114,115 or per-
form rhythm analysis33 were associated with post-resuscitation
myocardial dysfunction and reduced survival. Interruptions in
external chest compression also reduced the chances of converting
VF to another rhythm.32 Analysis of CPR performance during out-
of-hospital34,116 and in-hospital35 cardiac arrest also showed that
significant interruptions were common, with chest compressions
comprising no more than 51–76%34,35 of total CPR time.

With first shock efficacy of biphasic waveforms generally
exceeding 90%,117–120 failure to cardiovert VF successfully is more
likely to suggest the need for a period of CPR rather than a further
shock. Even if the defibrillation attempt is successful in restoring a
perfusing rhythm, it is very rare for a pulse to be palpable immedi-
ately after defibrillation and the delay in trying to palpate a pulse
will further compromise the myocardium if a perfusing rhythm has
not been restored.40

Subsequent studies have shown a significantly lower hands-
off-ratio with the one-shock protocol121 and some,41,122,123 but
not all,121,124 have suggested a significant survival benefit from
this single-shock strategy. However, all studies except one124 were
before-after studies and all introduced multiple changes in the pro-
tocol, making it difficult to attribute a possible survival benefit to
one of the changes.

When defibrillation is warranted, give a single shock and resume
chest compressions immediately following the shock. Do not delay
CPR for rhythm reanalysis or a pulse check immediately after a
shock. Continue CPR (30 compressions:2 ventilations) for 2 min
until rhythm reanalysis is undertaken and another shock given (if
indicated) (see Section 4 advanced life support).113 This single-
shock strategy is applicable to both monophasic and biphasic
defibrillators.

If VF/VT occurs during cardiac catheterisation or in the early
post-operative period following cardiac surgery (when chest com-
pressions could disrupt vascular sutures), consider delivering up
to three-stacked shocks before starting chest compressions (see
Section 8 special circumstances).125 This three-shock strategy may
also be considered for an initial, witnessed VF/VT cardiac arrest if
the patient is already connected to a manual defibrillator. Although
there are no data supporting a three-shock strategy in any of these
circumstances, it is unlikely that chest compressions will improve
the already very high chance of return of spontaneous circulation
when defibrillation occurs early in the electrical phase, immedi-
ately after onset of VF.

Waveforms

Historically, defibrillators delivering a monophasic pulse had
been the standard of care until the 1990s. Monophasic defibrillators

deliver current that is unipolar (i.e. one direction of current flow)
(Fig. 3.1). Monophasic defibrillators were particularly susceptible
to waveform modification depending on transthoracic impedance.
Small patients with minimal transthoracic impedance received
considerably greater transmyocardial current than larger patients,
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Fig. 3.1. Monophasic damped sinusoidal waveform (MDS).

here not only was the current less, but the waveform lengthened
o the extent that its efficacy was reduced.

Monophasic defibrillators are no longer manufactured, and
lthough many will remain in use for several years, biphasic defib-
illators have now superseded them. Biphasic defibrillators deliver
urrent that flows in a positive direction for a specified duration
efore reversing and flowing in a negative direction for the remain-

ng milliseconds of the electrical discharge. There are two main
ypes of biphasic waveform: the biphasic truncated exponential
BTE) (Fig. 3.2) and rectilinear biphasic (RLB) (Fig. 3.3). Biphasic
efibrillators compensate for the wide variations in transthoracic

mpedance by electronically adjusting the waveform magnitude
nd duration to ensure optimal current delivery to the myocardium,
rrespective of the patient’s size.

A pulsed biphasic waveform has recently been described in
hich the current rapidly oscillates between baseline and a pos-

tive value before inverting in a negative pattern. This waveform is
lso in clinical use. It may have a similar efficacy as other biphasic
aveforms, but the single clinical study of this waveform was not
erformed with an impedance compensating device.126,127 There
re several other different biphasic waveforms, all with no clini-
al evidence of superiority for any individual waveform compared
ith another.

All manual defibrillators and AEDs that allow manual override
f energy levels should be labelled to indicate their waveform

monophasic or biphasic) and recommended energy levels for
ttempted defibrillation of VF/VT.

Fig. 3.2. Biphasic truncated exponential waveform (BTE).
Fig. 3.3. Rectilinear biphasic waveform (RLB).

Monophasic versus biphasic defibrillation

Although biphasic waveforms are more effective at terminating
ventricular arrhythmias at lower energy levels, have demonstrated
greater first shock efficacy than monophasic waveforms, and have
greater first shock efficacy for long duration VF/VT,128–130 no
randomised studies have demonstrated superiority in terms of neu-
rologically intact survival to hospital discharge.

Some,119,128–133 but not all,134 studies suggest the biphasic
waveform improves short-term outcomes of VF termination com-
pared with monophasic defibrillation.

Biphasic waveforms have been shown to be superior to
monophasic waveforms for elective cardioversion of atrial fibril-
lation, with greater overall success rates, using less cumulative
energy and reducing the severity of cutaneous burns,135–138 and
are the waveform of choice for this procedure.

Multiphasic versus biphasic defibrillation

A number of multiphasic waveforms (e.g. triphasic, quadripha-
sic, multiphasic) have also been trialled in animal studies. Animal
data suggest that multiphasic waveforms may defibrillate at lower
energies and induce less post-shock myocardial dysfunction.139–141

These results are limited by studies of short duration of VF (approx-
imately 30 s) and lack of human studies for validation. At present,
there are no human studies comparing a multiphasic waveform
with biphasic waveforms for defibrillation and no defibrillator cur-
rently available uses multiphasic waveforms.

Energy levels

Defibrillation requires the delivery of sufficient electrical energy
to defibrillate a critical mass of myocardium, abolish the wavefronts
of VF and enable restoration of spontaneous synchronized electrical
activity in the form of an organised rhythm. The optimal energy for
defibrillation is that which achieves defibrillation whilst causing
the minimum of myocardial damage.142 Selection of an appropriate
energy level also reduces the number of repetitive shocks, which
in turn limits myocardial damage.143
Optimal energy levels for both monophasic and biphasic wave-
forms are unknown. The recommendations for energy levels are
based on a consensus following careful review of the current
literature. Although energy levels are selected for defibrillation,
it is the transmyocardial current flow that achieves defibrilla-
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ion. Current correlates well with successful defibrillation and
ardioversion.144 The optimal current for defibrillation using a
onophasic waveform is in the range of 30–40 A. Indirect evidence

rom measurements during cardioversion for atrial fibrillation
uggests that the current during defibrillation using biphasic wave-
orms is in the range of 15–20 A.137 Future technology may enable
efibrillators to discharge according to transthoracic current; a
trategy that may lead to greater consistency in shock success.
eak current amplitude, average current and phase duration all
eed to be studied to determine optimal values and manufacturers
re encouraged to explore further this move from energy-based to
urrent-based defibrillation.

irst shock

onophasic defibrillators
There are no new published studies looking at the optimal

nergy levels for monophasic waveforms since publication of the
005 guidelines. First shock efficacy for long duration cardiac arrest
sing monophasic defibrillation has been reported as 54–63% for
200 J monophasic truncated exponential (MTE) waveform129,145

nd 77–91% using a 200 J monophasic damped sinusoidal (MDS)
aveform.128–130,145 Because of the lower efficacy of this wave-

orm, the recommended initial energy level for the first shock using
monophasic defibrillator is 360 J. Although higher energy levels

isk a greater degree of myocardial injury, the benefits of earlier
onversion to a perfusing rhythm are paramount. Atrioventricular
lock is more common with higher monophasic energy levels, but

s generally transient and has been shown not to affect survival
o hospital discharge.146 Only one of 27 animal studies demon-
trated harm caused by attempted defibrillation using high energy
hocks.147

iphasic defibrillators
Relatively few studies have been published in the past 5 years

n which to refine the 2005 guidelines. There is no evidence that
ne biphasic waveform or device is more effective than another.
irst shock efficacy of the BTE waveform using 150–200 J has been
eported as 86–98%.128,129,145,148,149 First shock efficacy of the RLB
aveform using 120 J is up to 85% (data not published in the paper

ut supplied by personnel communication).130 First shock efficacy
f a new pulsed biphasic waveform at 130 J showed a first shock
uccess rate of 90%.126 Two studies have suggested equivalence
ith lower and higher starting energy biphasic defibrillation.150,151

lthough human studies have not shown harm (raised biomarkers,
CG changes, ejection fraction) from any biphasic waveform up to
60 J,150,152 several animal studies have suggested the potential for
arm with higher energy levels.153–156

The initial biphasic shock should be no lower than 120 J for RLB
aveforms and 150 J for BTE waveforms. Ideally, the initial biphasic

hock energy should be at least 150 J for all waveforms.
Manufacturers should display the effective waveform dose

ange on the face of the biphasic defibrillator; older monophasic
efibrillators should also be marked clearly with the appropriate
ose range. If the rescuer is unaware of the recommended energy
ettings of the defibrillator, use the highest setting for all shocks.

econd and subsequent shocks

The 2005 guidelines recommended either a fixed or escalating
nergy strategy for defibrillation. Subsequent to these recommen-

ations, several studies have demonstrated that although an esca-

ating strategy reduces the number of shocks required to restore
n organised rhythm compared with fixed-dose biphasic defib-
illation, and may be needed for successful defibrillation,157,158

ates of ROSC or survival to hospital discharge are not signifi-
n 81 (2010) 1293–1304 1299

cantly different between strategies.150,151 Conversely, a fixed-dose
biphasic protocol demonstrated high cardioversion rates (>90%)
with a three-shock fixed dose protocol but the small number of
cases did not exclude a significant lower ROSC rate for recurrent
VF.159 Several in-hospital studies using an escalating shock energy
strategy have demonstrated improvement in cardioversion rates
(compared with fixed dose protocols) in non-arrest rhythms with
the same level of energy selected for both biphasic and monophasic
waveforms.135,137,160–163

Monophasic defibrillators
Because the initial shock has been unsuccessful at 360 J, second

and subsequent shocks should all be delivered at 360 J.

Biphasic defibrillators
There is no evidence to support either a fixed or escalating

energy protocol. Both strategies are acceptable; however, if the first
shock is not successful and the defibrillator is capable of delivering
shocks of higher energy it is reasonable to increase the energy for
subsequent shocks.

Recurrent ventricular fibrillation
If a shockable rhythm recurs after successful defibrillation with

ROSC, give the next shock with the energy level that had previously
been successful.

Other related defibrillation topics

Defibrillation of children

Cardiac arrest is less common in children. Common causes of VF
in children include trauma, congenital heart disease, long QT inter-
val, drug overdose and hypothermia.164–166 Ventricular fibrillation
is relatively rare compared with adult cardiac arrest, occurring in 7-
15% of paediatric and adolescent arrests.166–171 Rapid defibrillation
of these patients may improve outcome.171,172

The optimal energy level, waveform and shock sequence is
unknown but as with adults, biphasic shocks appear to be at least as
effective as, and less harmful than, monophasic shocks.173–175 The
upper limit for safe defibrillation is unknown, but doses in excess
of the previously recommended maximum of 4 J kg−1 (as high as
9 J kg−1) have defibrillated children effectively without significant
adverse effects.38,176,177

The recommended energy levels for manual monophasic defib-
rillation are 4 J kg−1 for the initial shock and subsequent shocks.
The same energy levels are recommended for manual biphasic
defibrillation.178 As with adults, if a shockable rhythm recurs, use
the energy level for defibrillation that had previously been success-
ful.

For defibrillation of children above the age of 8 years, an
AED with standard electrodes is used and standard energy set-
tings accepted. For defibrillation of children between 1 and 8
years, special paediatric electrodes and energy attenuators are
recommended; these reduce the delivered energy to a level that
approaches that of the energy recommended for manual defibrilla-
tors. When these electrodes are not available, an AED with standard
electrodes should be used. For defibrillation of children below 1
year of age, an AED, is not recommended; however, there are a few

case reports describing the use of AEDs in children aged less than
1 year.179,180 The incidence of shockable rhythms in infants is very
low except when there is cardiac disease167,181,182; in these rare
cases, if an AED is the only defibrillator available, its use should be
considered (preferably with dose attenuator).
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ardioversion

If electrical cardioversion is used to convert atrial or ventric-
lar tachyarrhythmias, the shock must be synchronised to occur
ith the R wave of the electrocardiogram rather than with the T
ave: VF can be induced if a shock is delivered during the relative

efractory portion of the cardiac cycle.183 Synchronisation can be
ifficult in VT because of the wide-complex and variable forms of
entricular arrhythmia. Inspect the synchronisation marker care-
ully for consistent recognition of the R wave. If needed, choose
nother lead and/or adjust the amplitude. If synchronisation fails,
ive unsynchronised shocks to the unstable patient in VT to avoid
rolonged delay in restoring sinus rhythm. Ventricular fibrillation
r pulseless VT requires unsynchronised shocks. Conscious patients
ust be anaesthetised or sedated before attempting synchronised

ardioversion.

trial fibrillation

Optimal electrode position has been discussed previously, but
nterolateral and antero-posterior are both acceptable positions.
iphasic waveforms are more effective than monophasic wave-

orms for cardioversion of AF135–138; and cause less severe skin
urns.184 When available, a biphasic defibrillator should be used

n preference to a monophasic defibrillator. Differences in biphasic
aveforms themselves have not been established.

onophasic waveforms

A study of electrical cardioversion for atrial fibrillation indicated
hat 360 J monophasic damped sinusoidal (MDS) shocks were more
ffective than 100 or 200 J MDS shocks.185 Although a first shock
f 360 J reduces overall energy requirements for cardioversion,185

60 J may cause greater myocardial damage and skin burns than
ccurs with lower monophasic energy levels and this must be taken
nto consideration. Commence synchronised cardioversion of atrial
brillation using an initial energy level of 200 J, increasing in a
tepwise manner as necessary.

iphasic waveforms

More data are needed before specific recommendations can
e made for optimal biphasic energy levels. Commencing at high
nergy levels has not shown to result in more successful cardiover-
ion rates compared to lower energy levels.135,186–191 An initial
ynchronised shock of 120–150 J, escalating if necessary is a rea-
onable strategy based on current data.

trial flutter and paroxysmal supraventricular tachycardia

Atrial flutter and paroxysmal SVT generally require less energy
han atrial fibrillation for cardioversion.190 Give an initial shock
f 100 J monophasic or 70–120 J biphasic. Give subsequent shocks
sing stepwise increases in energy.144

entricular tachycardia

The energy required for cardioversion of VT depends on the

orphological characteristics and rate of the arrhythmia.192 Ven-

ricular tachycardia with a pulse responds well to cardioversion
sing initial monophasic energies of 200 J. Use biphasic energy lev-
ls of 120–150 J for the initial shock. Consider stepwise increases if
he first shock fails to achieve sinus rhythm.192
n 81 (2010) 1293–1304

Pacing

Consider pacing in patients with symptomatic bradycardia
refractory to anti-cholinergic drugs or other second line ther-
apy (see Section 4).113 Immediate pacing is indicated especially
when the block is at or below the His-Purkinje level. If transtho-
racic pacing is ineffective, consider transvenous pacing. Whenever
a diagnosis of asystole is made, check the ECG carefully for the
presence of P waves because this will likely respond to cardiac
pacing. The use of epicardial wires to pace the myocardium fol-
lowing cardiac surgery is effective and discussed elsewhere. Do not
attempt pacing for asystole unless P waves are present; it does not
increase short or long-term survival in- or out-of-hospital.193–201

For haemodynamically unstable, conscious patients with brad-
yarrhythmias, percussion pacing as a bridge to electrical pacing
may be attempted, although its effectiveness has not been estab-
lished.

Implantable cardioverter defibrillators

Implantable cardioverter defibrillators (ICDs) are becoming
increasingly common as the devices are implanted more frequently
as the population ages. They are implanted because a patient is con-
sidered to be at risk from, or has had, a life-threatening shockable
arrhythmia and are usually embedded under the pectoral mus-
cle below the left clavicle (in a similar position to pacemakers,
from which they cannot be immediately distinguished). On sens-
ing a shockable rhythm, an ICD will discharge approximately 40 J
through an internal pacing wire embedded in the right ventricle.
On detecting VF/VT, ICD devices will discharge no more than eight
times, but may reset if they detect a new period of VF/VT. Patients
with fractured ICD leads may suffer repeated internal defibrillation
as the electrical noise is mistaken for a shockable rhythm; in these
circumstances, the patient is likely to be conscious, with the ECG
showing a relatively normal rate. A magnet placed over the ICD will
disable the defibrillation function in these circumstances.

Discharge of an ICD may cause pectoral muscle contraction in
the patient, and shocks to the rescuer have been documented.202 In
view of the low energy levels discharged by ICDs, it is unlikely that
any harm will come to the rescuer, but the wearing of gloves and
minimising contact with the patient whilst the device is discharging
is prudent. Cardioverter and pacing function should always be re-
evaluated following external defibrillation, both to check the device
itself and to check pacing/defibrillation thresholds of the device
leads.

Pacemaker spikes generated by devices programmed to unipo-
lar pacing may confuse AED software and emergency personnel,
and may prevent the detection of VF.203 The diagnostic algorithms
of modern AEDs are insensitive to such spikes.
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